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Abstract
The Lie algebra gcm(3) is a 15-dimensional semidirect sum that contains the
algebra of the general linear group GL+(3, R). The six-dimensional Abelian
ideal of gcm(3) is generated by the mass quadrupole and monopole tensors.
The Bohr–Mottelson quantum model of nuclear rotational and vibrational
states is a particular irreducible representation of gcm(3). The gcm(3) dual
space consists of density matrices which are defined by the expectations of
the gcm(3) generators. A coadjoint orbit is a level surface in the dual space
of the gcm(3) Casimir, which is the squared length of the conserved Kelvin
circulation vector. This paper develops mean field theory on any coadjoint
orbit of gcm(3) densities. A Lax pair determines the dynamics of gcm(3)
densities on each coadjoint orbit. This Lax equation is equivalent to the
Riemann ellipsoid equations of motion.

PACS number: 21.60.Fw

1. Introduction

This paper applies the algebraic mean field method to the general collective motion Lie algebra
gcm(3) [1–3]. This 15-dimensional algebra is the hidden dynamical symmetry of the quantum
Bohr–Mottelson geometrical model of rotational and vibrational states in atomic nuclei [4]
and the classical Riemann ellipsoid theory of rotating stars and galaxies [5].

For systems of identical fermions, the two pre-eminent mean field theories are Hartree–
Fock and Hartree–Fock–Bogoliubov. These theories have underlying Lie algebraic and
geometric structures that play essential roles in their mathematical foundation and physical
application [6–8]. Given any Lie algebra of many-particle observables, these structures permit
the construction of a dynamical theory of densities as follows. The algebra’s dual space
consists of densities that are defined by the quantum expectations of the algebra’s generators.
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The mean field approximation restricts the model densities to a single coadjoint orbit of the
corresponding Lie group in the dual space. The canonical symplectic form on the coadjoint
orbit determines Hamiltonian dynamics from a model energy function. This paper explicitly
implements this general method for gcm(3). In prior work, the algebraic mean field method
was applied in the field of nuclear structure physics to the Elliott su(3) model [9–13] and the
symplectic sp(3, R) collective model [14–17].

The paper is organized into three sections. Section 1 defines the gcm(3) Lie algebra and
GCM(3) Lie group, discusses the physical interpretation of the algebra generators, enumerates
the coadjoint orbits in the dual space gcm(3)∗ and identifies the Casimir function as the
squared length of the conserved Kelvin circulation vector. Section 2 derives the mean field
Hamiltonian from an energy function E using the natural symplectic geometry of a coadjoint
orbit. The mean field Hamiltonian, a gcm(3)-valued function of the density, determines a
finite-dimensional Lax equation which is the equation of motion on each coadjoint orbit. For
a rotationally invariant energy function, the dynamics simplifies in the principal axis frame.
Such a scalar energy function is adopted that is the sum of the Riemann ellipsoid kinetic energy
plus a potential energy which is a pure function of the quadrupole and monopole moments.
The angular momentum and Kelvin circulation vectors each obey an Euler precession
equation in the principal axis frame. These precession equations plus a differential equation
involving the axis lengths of the inertia ellipsoid are equivalent to the Lax dynamical system.
The paper’s conclusion discusses various aspects of the mean field method for Lie algebra
models of nuclear structure.

The general collective motion Lie algebra gcm(3) is a 15-dimensional Lie subalgebra
of M6(R),

gcm(3) =
{

S =
(

X −U

0 −T X

) ∣∣∣∣∣X,U ∈ M3(R), T U = U

}
, (1)

where Mn(R) denotes the set of real n × n matrices and a left superscript T X indicates matrix
transposition of X. A representation of gcm(3) provides the algebra’s physical interpretation in
quantum mechanical many-body physics. Let (x̂αj , p̂αj ), 1 � j � 3, denote the dimensionless
Cartesian components of the position and momentum Hermitian operators for particle α in a
finite system of particles. They obey the canonical commutation relation, [x̂αj , p̂βk] = iδαβδjk .
The set of Hermitian one-body operators,

Q̂jk =
∑

α

x̂αj x̂αk, N̂ jk =
∑

α

(
x̂αj p̂αk − i

2
δjk

)
, (2)

close under commutation to form a Lie algebra. For A identical fermions (bosons) these one-
body operators act on the Hilbert space H that is the antisymmetrized (symmetrized) tensor
product of A-copies of the single-particle space. For each S in gcm(3), define the operator

σ(S) = i
∑
jk

XjkN̂jk +
i

2

∑
jk

UjkQ̂jk. (3)

When S is a matrix in gcm(3), the operator σ(S) is a skew-adjoint one-body operator on H.
This set of operators is a reducible representation of gcm(3), [σ(S1), σ (S2)] = σ([S1, S2]).

The general collective motion group GCM(3) is a connected Lie matrix group given by
exponentiation of gcm(3),

GCM(3) =
{

g =
(

x −x · U

0 T x
−1

) ∣∣∣∣∣ x ∈ GL+(3, R), U ∈ M3(R), T U = U

}
. (4)

The connected general linear group GL+(3, R) consists of the 3×3 real matrices with positive
determinant; it is a subgroup of GCM(3) given by all g = diag(x, T x

−1
) ∈ GCM(3) for
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x ∈ GL+(3, R). The set of matrices in GCM(3) with x = Id, the identity matrix, and U any
symmetric matrix is an Abelian normal subgroup isomorphic to the additive group R6. The
group GCM(3) is a semidirect product of R6 and GL+(3, R). The representation σ lifts to a
unitary reducible representation of the group GCM(3) on H. Mackey inducing constructs all
the irreducible unitary representations of GCM(3) [18].

I choose to embed the dual space gcm(3)∗ as a 15-dimensional connected submanifold in
the space M6(R):

gcm(3)∗ =
{
ρ =

(
T n t

−q −n

) ∣∣∣∣ n, q, t ∈ M3(R), T q = q, t = T nq−1n

}
. (5)

The nondegenerate pairing between the dual space element ρ ∈ gcm(3)∗ and a Lie algebra
element S ∈ gcm(3) is the real number

〈ρ, S〉 ≡ 1
2 tr(ρ · S) = tr(T n · X) + 1

2 tr(q · U). (6)

The matrix Lie group GCM(3) acts on its matrix Lie algebra gcm(3) by the adjoint
action, Adg(S) = gSg−1 for all g ∈ GCM(3) and S ∈ gcm(3). The group GCM(3) then
acts on the dual space gcm(3)∗ by the coadjoint action that satisfies the defining equation,
〈Ad∗

g(ρ), S〉 = 〈ρ, Adg−1(S)〉 for all g ∈ GCM(3), ρ ∈ gcm(3)∗ and S ∈ gcm(3), or

tr(Ad∗
g(ρ) · S) = tr(ρ · g−1Sg) = tr(gρg−1 · S), for all S ∈ gcm(3). (7)

The coadjoint action will be matrix conjugation, Ad∗
g(ρ) = gρg−1, provided gρg−1 is in the

dual space for all ρ ∈ gcm(3)∗ and g ∈ GCM(3). As direct calculation shows, gρg−1 is
indeed a matrix in the dual space,

gρg−1 =
(

T n′ t ′

−q ′ −n′

)
∈ gcm(3)∗, (8)

where n′ = T x
−1 · (n + qU) · T x, q ′ = T x

−1 · q · x−1 is symmetric, and t ′ = T n
′ · (q ′)−1 · n′.

In this calculation, I used the inverse to g in GCM(3),

g−1 =
(

x −x · U

0 T x
−1

)−1

=
(

x−1 U · T x

0 T x

)
. (9)

It is surprising that the coadjoint action simplifies to matrix conjugation because gcm(3)
is not a semisimple matrix Lie algebra. (The nondegenerate Killing form of a semisimple
Lie algebra identifies the dual space with the algebra, and the coadjoint action with the
adjoint action.) Although the matrix t that is part of the definition of the dual element ρ in
equation (5) plays a passive role in the pairing 〈ρ, S〉, its inclusion achieves the desired
simplification of the coadjoint action.

Corresponding to any normalized wavefunction � ∈ H is a dual element ρ where the
real matrix n = (njk) and the real symmetric matrix q = (qjk) are the expectations of the
Hermitian operators N̂jk and Q̂jk ,

njk = 〈�|N̂jk|�〉, qjk = 〈�|Q̂jk|�〉. (10)

The quantum mechanical expectation of the gcm(3) representation σ(S) equals half the trace
of the product of this density matrix times the Lie algebra element S,

〈ρ, S〉 = 1
2 tr(ρ · S) = −i〈�|σ(S)|�〉. (11)

Not every dual element is associated with a quantum mechanical state. Those that do are
called density matrices. For example, a density matrix ρ must have q positive-definite. In the
typical situation, many distinct quantum state vectors yield the same gcm(3) density matrix.
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The matrix q = (qij ) of a gcm(3) density is the monopole–quadrupole tensor or inertia
tensor. The trace of this tensor, which is the expectation of the monopole operator, determines
the nuclear radius. The traceless part, namely qij − (1/3)δij tr q, which is the expectation
of the quadrupole operator, determines the nuclear deformation. The inertia ellipsoid is the
surface in Cartesian space (x1, x2, x3) satisfying the equation

∑
ij q−1

ij xixj = 1 (recall that
q is positive-definite). This ellipsoidal surface gives a useful visualization of the size and
deformation of a quantum system of discrete particles.

The action of the group element x ∈ GL+(3, R) on three-dimensional Cartesian space
induces a transformation of the inertia ellipsoid with tensor q into another inertia ellipsoid
with tensor T xqx. When x ∈ SO(3), the rotation group, the inertia ellipsoid is rotated into
another ellipsoid with the same intrinsic deformation and size. The generators of a rotation
are the angular momenta, and the antisymmetric part l = n − T n of the matrix n = (nij ) of a
gcm(3) density provides the expectations of the angular momentum. The expectations of the
components of the angular momentum pseudovector �l are given by lij = εijklk .

Suppose the many-body Hamiltonian Ĥ on H is the sum of the kinetic energy Laplacian
and any potential energy multiplication operator that is a pure function of the position
coordinates. The commutator of the monopole–quadrupole operator Q̂ij with the Hamiltonian
is i[Q̂ij , Ĥ ] = N̂ ij + N̂ji . Adopting the Heisenberg picture, the time rate of change of Q̂ij is
the operator (N̂ ij + N̂ji), and, therefore, the symmetric matrix (n + T n) measures the system’s
monopole–quadrupole vibrational momentum. In particular, tr(n) determines the rate of
monopole breathing mode oscillations, and the traceless matrix (n + T n − (2/3) tr(n) Id)

determines the rate of the quadrupole deformation vibrations.

1.1. Coadjoint orbits

The coadjoint orbit Oρ consists of the density ρ and all transformed densities Ad∗
gρ as g

ranges over the entire group GCM(3). An orbit Oρ is a smooth connected surface contained
in the dual space gcm(3)∗.

Each coadjoint orbit of density matrices contains a matrix with the following special
form:

� =
(

−|C|(E12 − E21)/2 |C|2(E11 + E22)/4

−Id −|C|(E12 − E21)/2

)
, (12)

for |C| � 0. Eij denotes the elementary matrix whose only nonzero entry is one at the
intersection of row i and column j and Id = E11 + E22 + E33 is the identity matrix. To achieve
the special form � starting with a general density matrix ρ, first transform q in ρ to the identity
matrix using a pure GL+(3, R) group element x, T x

−1
qx−1 = Id. This transformation is

possible for density matrices that have q positive-definite. Next make an R6 transformation
U to remove the symmetric part of the matrix n, cf equation (8). Finally the antisymmetric
matrix n is a pseudovector that can be rotated so that it is aligned with the z-axis, i.e.,
n = |C|(E12 − E21)/2 where |C| is a nonnegative real number.

The coadjoint orbit, denoted by O�, containing �, is

O� = {ρ = Ad∗
g� = g�g−1 ∈ gcm(3)∗ | g ∈ GCM(3)}. (13)

The space of densities in gcm(3)∗ is a disjoint union of the coadjoint orbits O� as � ranges
over the orbit representatives (12) with |C| a nonnegative real number. When |C| is positive,
the coadjoint orbit is in general position, and O� is a 14-dimensional surface contained in the
dual space. When |C| = 0, the singular coadjoint orbit is 12-dimensional.
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1.2. Casimir invariant

A Casimir invariant is a real-valued function on the dual space that is invariant with respect
to the coadjoint action. Casimir functions, therefore, are constant on each coadjoint orbit.
The gcm(3) algebra has one independent Casimir invariant,

C2(ρ) = − 1
2 trρ2 = tr(tq − n2) = tr(T nq−1nq − n2). (14)

This function is trivially constant on each coadjoint orbit, C2(Ad∗
gρ) = C2(ρ); its value at the

orbit representative (12) is

C2(�) = |C|2. (15)

The trace of any power of ρ is a Casimir invariant, but these are not independent of C2.
The traces of powers of ρ are the coefficients of the secular equation for ρ, and, hence, the
eigenvalues of ρ are constant on a coadjoint orbit. Since ρ ∈ gcm(3)∗ is a matrix in the
Lie algebra sp(3, R) of the real symplectic group, its eigenvalues occur in pairs, ±λ, and
the multiplicity of the zero eigenvalue is even [19]. But, the kernel of ρ is at least three-
dimensional because of the following observation: when v is any column vector in R3 and ρ

is any density matrix,

ρ

(−q−1nv

v

)
=

(
T n t

−q −n

)(−q−1nv

v

)
= 0. (16)

Since the kernel of ρ cannot have an odd dimension, it must be at least four-dimensional
and the nonzero eigenvalues of ρ are ±i|C|. Thus, the quadratic Casimir C2 exhausts the
independent Casimir functions.

For any density matrix ρ, define the matrix c = q−1/2 · n · q1/2 − q1/2 · T n · q−1/2.
The pseudovector �c corresponding to this antisymmetric matrix is the Kelvin circulation. The
gcm(3) Casimir is the squared length of the Kelvin circulation vector, C2(ρ) = −(1/2) tr(c2) =
�c · �c = |C|2.

Rapidly rotating nuclei make a shape transition from oblate spheroids to triaxial ellipsoids
at some critical angular momentum Icr that depends on the isotope [20]. In self-gravitating
systems this transition is the classical Jacobi bifurcation [5]. A recent experimental analysis
of the giant dipole resonance in the nucleus 46Ti [21] indicates that the Kelvin circulation
remains constant after the shape transition and that the circulation of the triaxial ellipsoids
equals the critical angular momentum, |C| = Icr ≈ 29h̄ [22].

2. Hamiltonian vector fields on O�

An important mathematical theorem in representation theory is that the coadjoint orbits of any
Lie group are symplectic manifolds [23–25]. In many-body physics, the symplectic geometry
of a coadjoint orbit determines the mean field Hamiltonian from the energy function of a group
theoretical model.

Each element S of the gcm(3) Lie algebra defines a tangent vector field S to each
coadjoint orbit. Consider the curve ζ(ε) = exp(εS) in the group GCM(3). Given any
point ρ in the dual space, the curve ε 	→ Ad∗

ζ(ε)−1ρ = exp(−εS)ρ exp(εS) lies in the coadjoint

orbit through ρ. The tangent to this curve at ρ is denoted by S[ρ].
The annihilator Aρ at ρ is the subalgebra

Aρ = {S ∈ gcm(3) | [S, ρ] = 0}. (17)

When S is an element of the annihilator at ρ, S[ρ] is a zero tangent vector at ρ because the
curve Ad∗

ζ(ε)ρ is a fixed point. When the difference between two Lie algebra elements is an
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Table 1. Hamiltonian vector fields in gcm(3).

Hamiltonian vector field Sf [ρ]

Function f X U

λ(S) X U
qij 0 Eij + Eji

nij Eij 0
C2 0 0
tr(q) 0 2Id
tr(q2) 0 4q
tr(q3) 0 6q2

tr(q4) 0 8q3

(q−1)ij 0 −∑
nm(q−1)in(Enm + Emn)(q

−1)mj

tr(T n · q−1 · n) 2q−1n −2q−1 · n · T n · q−1

element of the annihilator at ρ, the corresponding tangent vectors are equal: S[ρ] = S ′[ρ]
if and only if S − S ′ ∈ Aρ . Therefore, the tangent space to the coadjoint orbit at ρ can be
identified with the vector space gcm(3) modulo the annihilator Aρ .

For two tangent vectors, S[ρ] and T [ρ], to the coadjoint orbit at ρ, define the symplectic
form

ωρ(S[ρ], T [ρ]) = −〈ρ, [S, T ]〉. (18)

This antisymmetric bilinear form is well defined on the tangent space to the coadjoint orbit
at ρ since, 〈ρ, [S, T ]〉 = 〈ρ, [S ′, T ′]〉 when S − S ′ ∈ Aρ and T − T ′ ∈ Aρ . The form ω is
nondegenerate, i.e., ωρ(S[ρ], T [ρ]) = 0 for all T in the gcm(3) Lie algebra if and only if S[ρ]
is a null tangent vector at ρ.

Suppose f is any smooth real-valued function on the coadjoint orbit Oρ . The derivative
of f at ρ in the direction of T [ρ] is defined by

df(T )(ρ) = d

dε
f (exp(−εT )ρ exp(εT ))|ε=0. (19)

Each function f defines a vector field Sf on each coadjoint orbit satisfying

ωρ(Sf [ρ], T [ρ]) = df(T )(ρ), (20)

for all directions T [ρ] tangent to the coadjoint orbit at ρ. The solution Sf [ρ] to this equation
is unique because the symplectic form is nondegenerate. The vector field Sf is called the
Hamiltonian vector field associated with the smooth function f . There exists a Lie algebra
element Sf [ρ] whose corresponding tangent vector is Sf [ρ]. The assignment of the Lie
algebra element Sf [ρ] to the function f at ρ is not unique, but the difference between two
such Lie algebra elements must lie in the annihilator Aρ . When the function f is the energy
itself, the vector field Sf [ρ] is the mean field Hamiltonian h[ρ]. For simplicity of notation, the
‘bars’ over the algebra elements will be omitted, but understood, whenever confusion between
algebra elements and vector fields is unlikely.

For each Lie algebra element S there is an elementary function λ(S) on the dual space
defined by λ(S)(ρ) = 〈ρ, S〉. The value of the function λ(S) at ρ is the expectation of the
physical observable corresponding to S when the system’s state has the gcm(3) density ρ. It
is easily shown that the Hamiltonian vector field associated with λ(S) is S. The Hamiltonian
vector fields associated with various smooth functions are provided in table 1.

In this table, the functions nij and qij are the ‘coordinate functions’ that map ρ into the
i, j real entries of the matrices n and q, respectively. Using the results for these coordinate
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functions and properties of the exterior derivative, the Hamiltonian vector field corresponding
to other functions in table 1 may be determined.

2.1. Dynamics on O�

A geometrical condition determines the time evolution of a gcm(3) density matrix: a solution
ρ(t) must be an integral curve of the gcm(3) Hamiltonian vector field h[ρ] or

ρ̇ = [ρ, h[ρ]]. (21)

Equation (21) is a finite-dimensional Lax equation [27, 28]. It is formally the same as the
time-dependent Hartree–Fock equation [29].

Dynamics may be expressed equivalently using the Poisson bracket. The Poisson bracket
on O� is defined from the symplectic form. The bracket of two smooth real-valued functions
f, g on O� is

{f, g}(ρ) ≡ ωρ(Sf [ρ], Sg[ρ]). (22)

When f is any smooth function on a coadjoint orbit, its time rate of change along a solution
curve is

ḟ = {f, E}. (23)

For example, when f = λ(S), the time rate of change of the observable corresponding to S
along a solution curve is

d

dt
λ(S) = 〈ρ̇, S〉 = 1

2
tr([ρ, h[ρ]]S)

= ωρ(S, h[ρ]) = {λ(S), E}(ρ). (24)

The last line can be written alternatively as the derivative of E in the direction S, {λ(S), E}(ρ) =
−dE(S)(ρ).

2.2. Rotation group SO(3)

The rotation group SO(3) is a subgroup of GL+(3, R) ⊂ GCM(3) consisting of all block
diagonal matrices τ(R) = diag(R,R) for R ∈ SO(3). A density ρ in gcm(3)∗ is transformed
by a rotation R ∈ SO(3) into the density τ(R) · ρ · τ(R)−1. In terms of the matrix entries
of ρ, a rotation R makes the following transformations: n 	→ R · n · TR, q 	→ R · q · TR and
t 	→ R · t · TR.

Any real symmetric matrix can be diagonalized by a rotation matrix. Hence, there is an
R ∈ SO(3) that diagonalizes the positive-definite inertia tensor,

q̃ = R · q · TR = diag
(
a2

1, a
2
2, a

2
3

)
, (25)

where a1, a2, a3 are real positive numbers. The inertia ellipsoid corresponding to the diagonal
matrix q̃ is defined by (x1/a1)

2 + (x2/a2)
2 + (x3/a3)

2 = 1. From a geometrical viewpoint, R
rotates the laboratory frame into the principal axis frame in which, by definition, the system’s
inertia tensor q̃ is diagonal. The quantity ak is the half-length of the kth principal axis of the
inertia ellipsoid.

Let M� denote the surface of all principal axis densities contained in the coadjoint orbit
O�. The points ρ̃ of M� have a diagonal inertia tensor, q̃, and

ρ̃ =
(

T ñ t̃

−q̃ −ñ

)
(26)
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satisfies an algebraic equation for the gcm(3) Casimir

tr(T ñq̃−1ñq̃ − ñ2) = |C|2. (27)

The circulation in the principal axis frame is denoted by the antisymmetric matrix C =
R · c · TR = A−1 · ñ · A − A · T ñ · A−1, where the diagonal matrix A = diag(a1, a2, a3). The
squared length of the corresponding pseudovector �C equals the gcm(3) Casimir, �C · �C = |C|2.
The principal axis manifold M� is 11-dimensional when |C| �= 0.

When the energy function is a rotational scalar, transformation of the dynamical system to
the principal axis frame simplifies the analysis. Let R(t) ∈ SO(3) be a smooth time-dependent
rotation that transforms a solution curve of the dynamical system (21) into the submanifold of
principal axis densities. Define the time-dependent matrix �(t) = Ṙ · TR in the Lie algebra
so(3) of the rotation group. The pseudovector �ω corresponding to the antisymmetric matrix
� is the angular velocity. Let ρ̃(t) = τ(R) · ρ(t) · τ(R)−1 ∈ M� denote the density in the
principal axis frame. The Hamiltonian dynamical system on the coadjoint orbit, equation (21),
is equivalent to the following dynamical equation on M�:

dρ̃

dt
= [ρ̃, h�[ρ̃]], (28)

where h�[ρ̃] = τ(R) · h[ρ] · τ(R)−1 − diag(�,�) is the gcm(3) Routhian. When the
energy function is a rotational scalar, the Hamiltonian vector field is invariant under rotations,
h[ρ̃] = τ(R) · h[ρ] · τ(R)−1.

2.3. Energy function

The energy function E(ρ) is a real-valued function defined on the dual space gcm(3)∗. It is the
sum of kinetic and potential energies. This function is assumed to be invariant under rotations,
E(τ (R) · ρ · τ(R)−1) = E(ρ) for all R ∈ SO(3). As a consequence, the angular momentum
vector �l is constant along each solution curve,

l̇ij = {lij , E}(ρ) = −dE(T )(ρ) = − d

dθ
E(τ (R(−θ)) · ρ · τ(R(θ)))|θ=0 = 0, (29)

where lij = nij − nji = λ(T )(ρ) is a component of the angular momentum vector for
T = diag(Eij − Eji, Eij − Eji) ∈ gcm(3), and R(θ) = exp(θ(Eij − Eji)) is a rotation in the
i–j plane through an angle θ .

The energy function is a sum of kinetic and potential energies. To respect time-reversal
symmetry, the kinetic energy must be of even degree in n. The kinetic energy formula must
also have the correct dimensional unit. A quadratic polynomial in n, which has the correct
dimensional unit and which is a rotational scalar, is the Riemann ellipsoid kinetic energy,

T (ρ) = 1
2 tr(T n · q−1 · n). (30)

The Riemann kinetic energy also enjoys a correct scaling property. When x =
diag(b, b, b), b > 0 is a scaling transformation in GL+(3, R), n 	→ x−1 · n · x, q 	→ x−1 ·
q · x−1, and the Riemann kinetic energy is transformed from T to b2T , which agrees with the
scaling of the exact quantum kinetic energy. The Hamiltonian vector field corresponding to
the Riemann ellipsoid kinetic energy is given in table 1.

The potential energy function V (q) is assumed to be a pure function of the quadrupole–
monopole tensor q, i.e., a function that depends only on the size and deformation of the system.
It is rotationally invariant, V (q) = V (R · q · TR). Such a scalar potential may be regarded as
a function of the three scalar quantities, uk = tr(qk), for k = 1, 2, 3. The exterior derivative
of the potential energy function is

dV = ∂V

∂u1
du1 +

∂V

∂u2
du2 +

∂V

∂u3
du3. (31)
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Hence, according to the table, the Hamiltonian vector field corresponding to the potential
energy has X = 0 and

U = 2
∂V

∂u1
Id + 4

∂V

∂u2
q + 6

∂V

∂u3
q2. (32)

In the principal axis frame, U is rotated to

Ũ = R · U · TR = 2
∂V

∂u1
Id + 4

∂V

∂u2
q̃ + 6

∂V

∂u3
q̃2, (33)

which is a diagonal matrix.
Another convenient way to regard a rotationally invariant function of q is as a function of

the eigenvalues of q. The derivative of V (a1, a2, a3) with respect to the semi-axis lengths ak

simplifies to

∂V

∂ak

= ∂V

∂u1

∂u1

∂ak

+
∂V

∂u2

∂u2

∂ak

+
∂V

∂u3

∂u3

∂ak

= ak

(
2

∂V

∂u1
+ 4

∂V

∂u2
a2

k + 6
∂V

∂u3
a4

k

)

= akŨ kk. (34)

Define the entries of a diagonal matrix by W̃kk = −ak∂V/∂ak in terms of which Ũ = −q̃−1W̃ ,
a product of two diagonal matrices.

Thus, the Hamiltonian vector field in the rotating principal axis frame for the scalar energy
function E = T (ρ) + V (q) is

h�[ρ̃] =
(

q̃−1 · ñ − � q̃−1 · ñ · T ñ · q̃−1 + W̃ · q̃−1

0 −T (q̃−1 · ñ) − �

)
. (35)

The equations of motion equation (28) in the principal axis frame for this energy are

dq̃

dt
= ñ + T ñ + [�, q̃] (36)

dñ

dt
= t̃ + W̃ + [�, ñ], (37)

where t̃ = T ñ · q̃−1 · ñ. The commutators involving the angular velocity � are Coriolis
terms. This dynamical system is the Riemann ellipsoid equations of motion [5]. This set of
15 coupled ordinary differential equations should be solved with proscribed initial conditions
for the 15 unknown functions, q̃(t), ñ(t),�(t).

2.4. Precession equations for I and C

Since q̃ is diagonal, equation (36) determines the angular velocity in terms of off-diagonal
entries of the symmetric matrix (ñ + T ñ),(

a2
i − a2

j

)
�ij = ñij + ñj i , for i �= j. (38)

The six differential equations for the off-diagonal components of n may be expressed
equivalently as two precession equations for the angular momentum and circulation vectors.
The angular momentum in the rotating frame, I (t) = ñ− T ñ = R(t) · l · TR(t), is not constant.
From equation (37), this angular momentum obeys the Euler precession equation,

d

dt
I = [�, I ], or, equivalently,

d

dt
�I = − �ω × �I , (39)
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where the components of the pseudovector �I are related to the entries of the antisymmetric
matrix I by Iij = εijkIk . Define the antisymmetric matrix

� = 1
2 (A · � · A−1 + A−1 · � · A − A−1 · I · A−1), (40)

and let �λ denote the corresponding pseudovector. The circulation in the rotating frame also
obeys a precession equation,

d

dt
C = [�,C], or, equivalently,

d

dt
�C = −�λ × �C, (41)

as can be verified from equations (36) and (37). The vector �λ is called the vortex velocity.
The velocities � and � may be expressed as functions of the angular momentum and Kelvin
circulation vectors,

�ij =
(
a2

i + a2
j

)
Iij − 2aiajCij(

a2
i − a2

j

)2 , �ij = 2aiaj Iij − (
a2

i + a2
j

)
Cij(

a2
i − a2

j

)2 . (42)

The precession equations (39) and (41) for I and C demonstrate explicitly that the squared
lengths of the angular momentum vector and the Kelvin circulation vector are constant on
solution curves. The total energy E is also conserved.

The diagonal components of ñ determine, according to equation (36), the vibrational rate
of the semi-axis lengths,

ak

dak

dt
= ñkk, for k = 1, 2, 3. (43)

Using this identity, the diagonal parts of equation (37) determines three second-order
differential equations for the axis lengths ak ,

d2aj

dt2
= 1

2

∑
i �=j

(
(Iij + Cij )

2

(ai + aj )3
− (Iij − Cij )

2

(ai − aj )3

)
− ∂V

∂aj

, for j = 1, 2, 3. (44)

Hence, the Lax equation (28) is equivalent to the system, equations (36) and (37), and to
the system, equations (39), (41) and (44), for I (t), C(t), ak(t). To make further progress
in solving this system, a specific choice for the potential energy function V (a1, a2, a3) is
necessary.

When dρ̃/dt = 0, the rotating system is in equilibrium, and, hence, the right-hand sides
of equations (36) and (37) are zero. Thus, an equilibrium solution has constant axis lengths ak ,
a constant vibrational momentum tensor ñ, and constant angular momentum Ĩ and circulation
C̃. The angular velocity �ω, respectively, vortex velocity �λ, is aligned or anti-aligned with
the angular momentum �I , respectively, Kelvin circulation �C. This alignment is only possible
when these vectors are all aligned with one principal axis (a S-type ellipsoid) or all lie in
one principal plane. This restriction is known as Riemann’s theorem [5]. Given �I and �C,
the three axis lengths ak are solved for by requiring that the right-hand side of equation (44)
vanishes. When the sum of an attractive surface tension term and a Coulomb repulsion term
approximates the atomic nuclear potential, many equilibrium solutions are known explicitly
[18, 20, 30].

2.5. S-type ellipsoids

An S-type ellipsoid is a special solution for the important case of rotation about one principal
axis, say the 3-axis. When �I , �ω, �C and �λ are all aligned with one principal axis, the precession
equations (39) and (41) are satisfied trivially with the angular momentum �I and Kelvin
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circulation �C vectors constant in time. The remaining equations for the axis length vibrations,
equation (44), simplify to

d2aj

dt2
= −∂Veff

∂aj

, for j = 1, 2, 3, (45)

where the effective potential Veff(a1, a2, a3) = T + V is the sum of the kinetic energy
T (a1, a2, a3) and the potential energy V (a1, a2, a3) with

T (a1, a2, a3) = 1

4

{
(I + C)2

(a1 + a2)2
+

(I − C)2

(a1 − a2)2

}
. (46)

An equilibrium S-type ellipsoid is attained when Veff(a1, a2, a3) is minimized.

2.6. GCM(3) group transformation

Another way to set up the equations of motion is to determine the time-dependent matrix g(t)

in the group GCM(3) that transforms the coadjoint orbit representative � of equation (12)
to ρ(t) = Ad∗

g(t)�. From the Lax equation (21), the group transformation g(t) satisfies the
matrix differential equation,

dg

dt
= −h[g�g−1] · g. (47)

When the group element g is written as equation (4), the density ρ = g�g−1 of equation (5) has
entries n = T x−1(|C|(E12 −E21)/2+U)T x and q = T x−1x−1. The GL+(3, R) matrix x can be
expressed as the product of a rotation, a diagonal matrix with positive real numbers as entries,
and another rotation, x = TR · A · S with R, S ∈ SO(3), A = diag(a1, a2, a3), ak > 0. Using
this special form for x, the monopole–quadrupole tensor is q = TR · A2 · R. The orthogonal
matrix R rotates the inertia tensor into its principal axis value q̃ = A2, and the entries of the
diagonal matrix A are the half-lengths of the principal axes of the inertia ellipsoid. Thus, these
matrices R and A are the same as those defined by equation (25). The vibrational momentum
is n = TR · ñ · R with ñ = A · ((|C|/2)S · (E12 − E21) · T S + US) · A−1 and US = S · U · T S

is a real symmetric matrix.
The circulation in the principal axis frame is

C = A−1 · ñ · A − A · T ñ · A−1

= S · |C|(E12 − E21) · T S, (48)

and, therefore, the rotation matrix S aligns the circulation vector in the principal axis frame
with the 3-axis. Define the vortex velocity matrix � = Ṡ · T S; the vortex velocity �λ is
the pseudovector corresponding to this antisymmetric matrix. The circulation obeys the
precession equation (41), and it will be shown shortly below that this � is the same as that
given in equation (40).

By multiplying both sides of equation (47) on the left by τ(R), the dynamical equation in
the laboratory frame simplifies to an equation in the rotating principal axis frame,

d

dt

(
A−1 · S −A−1 · US · S

0 A · S

)
= −h�[ρ̃]

(
A−1 · S −A−1 · US · S

0 A · S

)
. (49)

This equation may be simplified further by right multiplication with τ(S)−1:

d

dt

(
A−1 −A−1 · US

0 A

)
=

(−T F G

0 F

)(
A−1 −A−1 · US

0 A

)
, (50)
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F = A−1 · (−C/2 + US) · A−1 + � − A · � · A−1

G = A−1 · ((C/2 + US) · A−2 · (C/2 − US) + [US,�] − W̃ ) · A−1.
(51)

Since A is diagonal, F must be likewise diagonal. The antisymmetric part of the diagonal
matrix AFA vanishes and determines the circulation,

C = 2A · � · A − (A2 · � + � · A2). (52)

The off-diagonal entries of the symmetric part of AFA also vanish and this determines the
off-diagonal entries of the symmetric matrix US ,

US
ij = 1

2

(
a2

i − a2
j

)
�ij , for i �= j. (53)

These formulae for C and US imply an expression for the angular momentum I = ñ − T ñ,

I = (A2 · � + � · A2) − 2A · � · A, (54)

which agrees with the prior definition of � in (40). In equation (50), the matrix F simplifies
to a diagonal one with entries, Fii = US

ii

/
a2

i , and the dynamical equation involving F is

ai

dai

dt
= US

ii . (55)

Finally, the time rate of change of US according to equation (50) is

dUS

dt
= −A · G · A = (US + C/2) · A−2 · (US − C/2) + [�,US] + W̃ . (56)

This matrix equation is equivalent to equations (39) and (44) for the precession of the angular
momentum vector and the vibration of the axis lengths.

3. Conclusion

This paper demonstrates the simplicity and power of the algebraic mean field method in the
case of gcm(3). Starting from the definition of the gcm(3) Lie algebra of observables and
following a well-defined construction, I derive the Lax equation that determines Hamiltonian
mean field dynamics of gcm(3) densities on GCM(3) coadjoint orbits. I also show that the
Lax equation is equivalent to the Riemann ellipsoid system of equations.

All the irreducible unitary representations of GCM(3) are produced via the method of
geometric quantization [31]. This quantization technique applies to integral coadjoint orbits
which are special orbits that satisfy a kind of Bohr–Sommerfeld quantization rule [23–25]. For
gcm(3) the integral orbits are those for which the Kelvin circulation |C| equals a nonnegative
integer multiple of h̄.

Kirillov’s metatheorem asserts that all the properties of a unitary irreducible representation
of a Lie group are encoded in the symplectic geometry of its integral coadjoint orbits. This
sweeping metatheorem is unproven, but it motivates an important research programme in Lie
representation theory that has achieved significant results [23, 32]. For algebraic mean field
theory the metatheorem indicates that quantum properties of a group theoretic model may be
inferred from an investigation of integral coadjoint orbits. For example, the decomposition
of unitary discrete series representations of Sp(3, R) into irreducible representations of
GCM(3) [33] is given correctly by the range of the gcm(3) Casimir function on integral
coadjoint orbits of Sp(3, R) [16]. Algebraic mean field theory, although a semiclassical
approximation, replicates many exact quantum results using a simpler mathematical framework
than representation theory. When necessary, the quantum representations may be recovered
by geometric quantization of the integral coadjoint orbits.
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When � is a vector in the space of a representation π of a Lie group G, the states in the set
C(�) = {π(g)� | g ∈ G} are called coherent states [34–37]. If � is the density corresponding
to �, then Ad∗

g� is the density corresponding to the coherent state π(g)�:

C(�) → O�, π(g)� 	→ Ad∗
g�, (57)

where O� denotes the coadjoint orbit contained in the dual space of the group’s Lie algebra.
If the group G is semisimple, the representation π is an irreducible highest weight
representation, and � is a highest weight vector, then the mapping, equation (57), is a
diffeomorphism and O� is an integral coadjoint orbit. In this favourable, case the space
of coherent states is a symplectic manifold, and the properties of π may be determined by
quantizing its coherent states, a method that is closely related to the geometric quantization
construction for an integral coadjoint orbit [37]. But GCM(3) is not semisimple and the
mapping, equation (57), is generally many-to-one. An exception is the |C| = 0 irreducible
representation of GCM(3) that extends to an irreducible highest weight representation of
the simple metaplectic group Mp(3, R). The space of coherent states associated with such
a highest weight representation of Mp(3, R) is diffeomorphic to the symplectic manifold
Mp(3, R)/U(3)∼= GCM(3)/SO(3)∼=O�, where � is the density (12) with |C| = 0.

The coadjoint orbit used in a particular physical application is not limited to the class of
integral orbits which correspond to irreducible representations. The freedom in choosing an
orbit is an essential advantage to mean field theory. When one or more physically significant
degrees of freedom are not part of the Lie algebra of observables, the quantum Hamiltonian
operator is not an approximate function of the algebra generators, and its eigenstates are not
vectors contained in one irreducible representation space. Thus, the dynamical symmetry is
broken and no irreducible representation space adequately models the system. Nevertheless
a mean field theory using one nonintegral coadjoint orbit may make a viable model. A
typical example is collective rotational bands in deformed nuclei. Excitation energies and
deformations of states forming a rotational band may be described accurately in many isotopes
if the algebra contains the angular momentum and a quadrupole operator, e.g., su(3), rot(3),
or gcm(3). However, pairing and spin–orbit forces strongly break the symmetry of the
ground state of the band, and the ground-state wavefunction is mixed among many irreducible
representation spaces. In this scenario, the coadjoint orbit adopted for mean field theory
should be the orbit that contains the density of the ground state. The mean field approximation
applies to the band members when the energies of the excited states are given accurately by a
function of the collective observables in the algebra.

A generalization of the Hohenberg–Kohn theorem of density functional theory shows that
there exists an energy function on the dual space of any Lie algebra of observables whose
global minimum is the density of the exact ground-state wavefunction [38, 39]. But, like
the original Hohenberg–Kohn proof, the theorem does not provide a method for the energy
function’s explicit construction. This theorem indicates that the coadjoint orbit method has
the potential to be an exact theory in some respects. The knowledge of the existence of the
exact energy function in traditional Hohenberg–Kohn density functional theory stimulates the
efforts of many researchers, especially in quantum chemistry, to find it. The energy function
in group theoretical models is approximated usually by a rotationally invariant low-degree
polynomial of the algebra generators, cf section 2.3. The polynomial’s coefficients are chosen
to attain a good fit to experimental energy levels.

When the dimension of the algebra or the dimension of the representation space is large,
representation theory may become intractable, and the mean field approximation is the only
useful method available to create an algebraic physical model. In the case of the noncompact
algebra gcm(3), the irreducible representations are infinite-dimensional, while the dimension
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of a coadjoint orbit is either 14 or 12. The gcm(3) mean field theory only requires matrix
operations with 6 × 6 real matrices. For a matrix Lie algebra, calculations in the mean field
approximation involve just matrix operations.

Any dynamical symmetry algebra g determines a mean field theory and the general
procedure for its construction is clear. The model densities are the points of one coadjoint
orbit O� of the dynamical symmetry group in the algebra’s dual space g∗. The symplectic
structure on this coadjoint orbit yields the mean field Hamiltonian h[ρ] from a model energy
function E(ρ). The time development of the density is a Hamiltonian dynamical system on
the coadjoint orbit. The final form of the mean field theory simplifies when the algebra has
a faithful matrix representation, as in equation (1) for gcm(3). When the coadjoint action is
matrix conjugation, a Lax equation, such as equation (21), determines the dynamics. In future
work the mean field theories associated with dynamical symmetry algebras of the interacting
boson model will be investigated, e.g., g = u(6), u(5), so(6), so(5) [40].
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